NAD+ in Brain Aging and Neurodegenerative Disorders
نویسندگان
چکیده
منابع مشابه
Gene-diet interactions in brain aging and neurodegenerative disorders.
While there are many examples of people who live for 100 years or more with little evidence of a decline in brain function, many others are not so fortunate and experience a neurodegenerative disorder, such as Alzheimer disease or Parkinson disease. Although an increasing number of genetic factors that may affect the risk for neurodegenerative disorders are being identified, emerging findings s...
متن کاملMolecular biology of brain aging and neurodegenerative disorders.
A significant component of the aging process is genetically determined. Numerous theories of aging exist, many of which postulate the existence of "longevity genes." Recent advances in molecular biological and other techniques have allowed a significantly greater understanding of aging and age-related disease. This will be illustrated by four genetic and sporadic diseases: Alzheimer's disease (...
متن کاملAutophagy in aging and in neurodegenerative disorders.
Autophagy (ATG) is the process of bulk degradation and recycling of long-lived proteins, macromolecular aggregates, and damaged intracellular organelles. Cellular homeostasis requires continuous removal of worn-out components and replacement with newly synthesized ones. Studies in yeast and other mammalian systems have increased our knowledge of the molecular mechanism of autophagy and the role...
متن کاملThe mitochondrial genome, aging and neurodegenerative disorders.
Mitochondria contain the only extra-nuclear source of DNA. Under evolutionary pressure mitochondrial DNA (mtDNA) has adapted from genomes containing over 1,000 kb containing significant quantities of non-coding DNA to the highly compact mammalian mtDNA. In humans, the mitochondrial genome consists of a small (16.5 kb) double-stranded circular genome constituting less than 1% of the total cellul...
متن کاملNitric oxide and cellular stress response in brain aging and neurodegenerative disorders: the role of vitagenes.
Nitric oxide and other reactive nitrogen species appear to play crucial roles in the brain such as neuromodulation, neurotransmission and synaptic plasticity, but are also involved in pathological processes such as neurodegeneration and neuroinflammation. Acute and chronic inflammation result in increased nitrogen monoxide formation and nitrosative stress. It is now well documented that NO and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell Metabolism
سال: 2019
ISSN: 1550-4131
DOI: 10.1016/j.cmet.2019.09.001